Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.005
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657041

RESUMO

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Assuntos
Diferenciação Celular , Colite , Histona Desacetilases , Correpressor 1 de Receptor Nuclear , Células Th17 , Animais , Células Th17/citologia , Células Th17/metabolismo , Células Th17/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Colite/genética , Colite/metabolismo , Colite/imunologia , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Interleucina-2/metabolismo
2.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657065

RESUMO

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental , Serina C-Palmitoiltransferase , Esfingolipídeos , Células Th17 , Animais , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/citologia , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Camundongos Knockout , Colite/metabolismo , Colite/patologia , Camundongos Endogâmicos C57BL
3.
J Neuroinflammation ; 21(1): 73, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528529

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS), a post-infectious, immune-mediated, acute demyelinating disease of the peripheral nerves and nerve roots, represents the most prevalent and severe acute paralyzing neuropathy. Purinergic P2X7 receptors (P2X7R) play a crucial role in central nervous system inflammation. However, little is known about their role in the immune-inflammatory response within the peripheral nervous system. METHODS: Initially, we assessed the expression of purinergic P2X7R in the peripheral blood of patients with GBS using flow cytometry and qRT-PCR. Next, we explored the expression of P2 X7R in CD4+ T cells, CD8+ T cells, and macrophages within the sciatic nerves and spleens of rats using immunofluorescence labeling and flow cytometry. The P2X7R antagonist brilliant blue G (BBG) was employed to examine its therapeutic impact on rats with experimental autoimmune neuritis (EAN) induced by immunization with the P0180 - 199 peptide. We analyzed CD4+ T cell differentiation in splenic mononuclear cells using flow cytometry, assessed Th17 cell differentiation in the sciatic nerve through immunofluorescence staining, and examined the expression of pro-inflammatory cytokine mRNA using RT-PCR. Additionally, we performed protein blotting to assess the expression of P2X7R and NLRP3-related inflammatory proteins within the sciatic nerve. Lastly, we utilized flow cytometry and immunofluorescence labeling to examine the expression of NLRP3 on CD4+ T cells in rats with EAN. RESULTS: P2X7R expression was elevated not only in the peripheral blood of patients with GBS but also in rats with EAN. In rats with EAN, inhibiting P2X7R with BBG alleviated neurological symptoms, reduced demyelination, decreased inflammatory cell infiltration of the peripheral nerves, and improved nerve conduction. BBG also limited the production of pro-inflammatory molecules, down-regulated the expression of P2X7R and NLRP3, and suppressed the differentiation of Th1 and Th17 cells, thus protecting against EAN. These effects collectively contribute to modifying the inflammatory environment and enhancing outcomes in EAN rats. CONCLUSIONS: Suppression of P2X7R relieved EAN manifestation by regulating CD4+ T cell differentiation and NLRP3 inflammasome activation. This finding underscores the potential significance of P2X7R as a target for anti-inflammatory treatments, advancing research and management of GBS.


Assuntos
Síndrome de Guillain-Barré , Neurite Autoimune Experimental , Antagonistas do Receptor Purinérgico P2X , Animais , Humanos , Ratos , Linfócitos T CD8-Positivos , Diferenciação Celular/efeitos dos fármacos , Síndrome de Guillain-Barré/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Nervo Isquiático/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
4.
Iran J Allergy Asthma Immunol ; 23(1): 107-114, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38485905

RESUMO

T helper 1 (TH1) and TH2 lymphocytes are the most important components of the immune system affected by blood transfusion. This study aimed`` to evaluate the effect of blood transfusion on gene expression of transcription factors related to the development of TH1, TH2, TH17 and regulatory T cells (Tregs). In this cross-sectional study, 20 patients diagnosed with abdominal aortic aneurysms requiring surgical repair were studied from January 2018 to August 2020. We utilized real-time PCR to evaluate the expression of transcription factor genes associated with TH1, TH2, TH17, and Treg, namely T-box-expressed-in-T-cells (T-bet), GATA-binding protein 3 (GATA-3), retinoid-related orphan receptor (RORγt), and fork head box protein 3 (Foxp3), respectively. The sampling occurred before anesthesia, 24- and 72 hours post-transfusion, and at the time of discharge. The results showed that the T-bet gene expression, compared to the time before transfusion, was significantly decreased 24 hours after blood transfusion and upon discharge while GATA3 genes exhibited a significant reduction both 24 and 72 hours after the transfusion, as compared to the pre-transfusion levels and the time of patient discharge. The Foxp3 gene demonstrated an increase at all study stages, with a notable surge, particularly 72 hours after red blood cell (RBC) transfusion. Conversely, the expression of RORγt gene, consistently decreased throughout all stages of the study. RBC transfusion in abdominal aortic aneurysm patients altered the balance of transcription gene expression of TH1, TH2, TH17, and Treg cells.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Estudos Transversais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Transfusão de Sangue , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Células Th17/metabolismo , Proteínas com Domínio T/genética
5.
Vopr Pitan ; 93(1): 22-32, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555607

RESUMO

The gastrointestinal tract is a barrier, represented by dynamic and mutually regulating components (microbial, chemical, physical and immune) for the selective penetration of luminal contents into the internal environment. From the point of view of immunologists, even in a physiological condition, the epithelium of the intestinal wall is in a state of mild inflammation, which is explained by the constant invasion of antigens (food, microbial) and, in turn, the constant readiness of the immune system to respond. The purpose of this review was to analyze information about the formation of microbial and immunological barriers, immunological tolerance to microbiota and the possible role of flavonoids in this. Material and methods. The literature search was carried out using PubMed, ResearchGate, Elibrary databases mainly for the last 10 years, using the following keywords: flavonoid, gut microbiome/microbiota, Th17, Treg, RORγt, immunity, segmented filamentous bacteria. Results. During the immune response, a significant role in maintaining the intestinal barrier function is assigned to helper T lymphocytes type 17 (Th17). The intestinal microbiome is a key element in the formation of the immune barrier. Th17 differentiation in the intestine is fully triggered by commensals (apparently, the main role belongs to segmented filamentous bacteria) after weaning and the start of complementary feeding. Pro-inflammatory Th17 effectors in the gut are controlled by anti-inflammatory regulatory T-cells (Treg). In recent years, it has been established that despite the opposing functions of regulatory cells and effector Th17 cells, their differentiation is similar and is characterized by the expression of the common transcription factor RORγt. The main part of the peripheral regulatory lymphocytes of the intestine is a population that stably expresses not only FOXP3, but also RORγt. Flavonoids, which are plant secondary metabolites of the polyphenolic structure, are able to inhibit intracellular kinases and, as a result, influence the activation and implementation of effector functions of immunocompetent cells. Some flavonoids promote RORγt expression and appear to be able to reprogram the effector phenotype of Th17 cells, reducing their pathogenicity. Conclusion. Understanding the interactions between the microbiota, immune cells, and factors involved in their regulation, which are critical for the maintenance of tolerance, may facilitate progress in the prevention and therapeutic approaches to treat immunoinflammatory and autoimmune diseases.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Linfócitos T Reguladores/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Flavonoides , Células Th17/metabolismo
6.
J Immunol ; 212(9): 1428-1441, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466035

RESUMO

Endometriosis is a chronic inflammatory disease in which endometrial-like tissue grows ectopically, resulting in pelvic pain and infertility. IL-23 is a key contributor in the development and differentiation of TH17 cells, driving TH17 cells toward a pathogenic profile. In a variety of inflammatory and autoimmune disorders, TH17 cells secrete proinflammatory cytokines, including IL-17, contributing to disease pathophysiology. Our studies and others have implicated IL-17 and TH17 cell dysregulation in endometriosis, which is associated with disease severity. In this article, we address whether IL-23-driven TH17 cells contribute to cardinal features of lesion proliferation, vascularization, and inflammation in endometriosis using patient samples, representative cell lines, and our established mouse model of endometriosis. The results indicated dysregulated expression of key genes in the IL-23/TH17 axis in patient ectopic and eutopic endometrial samples and increased IL-23 protein in patient plasma compared with controls. In vitro studies using primary human TH cells determined that rIL-23 mixture treatment increased pathogenic TH17 cell frequency. Similarly, rIL-23 treatment of cell lines (12Z cells, EECCs, HUVECs, and hESCs) representative of the endometriotic lesion microenvironment increased cytokines and growth factors, which play a role in lesion establishment and maintenance. In a syngeneic mouse model of endometriosis, rIL-23 treatment altered numbers of myeloid and T cell subsets in peritoneal fluid and increased giant cells within the lesion. Lesions from rIL-23-treated mice did not reveal significant alterations in proliferation/vascularization, although trends of increased proliferation and vascularization were observed. Collectively, these findings provide insights into the impact of the IL-23/TH17 axis on local immune dysfunction and broadly on endometriosis pathophysiology.


Assuntos
Endometriose , Interleucina-17 , Feminino , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Células Th17/metabolismo , Endometriose/metabolismo , Endometriose/patologia , Citocinas/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Interleucina-23/metabolismo
7.
Pediatr Rheumatol Online J ; 22(1): 32, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431635

RESUMO

BACKGROUND: A better understanding of the pathogenesis of polyarticular juvenile idiopathic arthritis (polyJIA) is needed to aide in the development of data-driven approaches to guide selection between therapeutic options. One inflammatory pathway of interest is JAK-STAT signaling. STAT3 is a transcription factor critical to the differentiation of inflammatory T helper 17 cells (Th17s). Previous studies have demonstrated increased STAT3 activation in adult patients with rheumatoid arthritis, but less is known about STAT3 activation in polyJIA. We hypothesized that Th17 cells and STAT3 activation would be increased in treatment-naïve polyJIA patients compared to pediatric controls. METHODS: Blood from 17 patients with polyJIA was collected at initial diagnosis and again if remission was achieved (post-treatment). Pediatric healthy controls were also collected. Peripheral blood mononuclear cells were isolated and CD4 + T cell subsets and STAT activation (phosphorylation) were evaluated using flow cytometry. Data were analyzed using Mann-Whitney U and Wilcoxon matched-pairs signed rank tests. RESULTS: Treatment-naïve polyJIA patients had increased Th17 cells (CD3 + CD4 + interleukin(IL)-17 +) compared to controls (0.15% v 0.44%, p < 0.05), but Tregs (CD3 + CD4 + CD25 + FOXP3 +) from patients did not differ from controls. Changes in STAT3 phosphorylation in CD4 + T cells following ex vivo stimulation were not significantly different in patients compared to controls. We identified dual IL-17 + and interferon (IFN)γ + expressing CD4 + T cells in patients, but not controls. Further, both Th17/1 s (CCR6 + CD161 + IFNγ + IL-17 +) and ex-Th17s (CCR6 + CD161 + IFNγ + IL-17neg) were increased in patients' post-treatment (Th17/1: 0.3% v 0.07%, p < 0.05 and ex-Th17s: 2.3% v 1.4%, p < 0.05). The patients with the highest IL-17 expressing cells post-treatment remained therapy-bound. CONCLUSIONS: Patients with polyJIA have increased baseline Th17 cells, potentially reflecting higher tonic STAT3 activation in vivo. These quantifiable immune markers may identify patients that would benefit upfront from pathway-focused biologic therapies. Our data also suggest that inflammatory CD4 + T cell subsets not detected in controls but increased in post-treatment samples should be further evaluated as a tool to stratify patients in remission on medication. Future work will explore these proposed diagnostic and prognostic biomarkers.


Assuntos
Artrite Juvenil , Adulto , Humanos , Criança , Artrite Juvenil/terapia , Artrite Juvenil/metabolismo , Interleucina-17 , Células Th17/metabolismo , Linfócitos T Reguladores/metabolismo , Leucócitos Mononucleares/metabolismo
8.
Chem Biol Drug Des ; 103(2): e14477, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38361150

RESUMO

Dry eye (DE) is a multifactorial ocular surface disease characterised by an imbalance in tear homeostasis. The pathogenesis of DE is complex and related to environmental, immunological (e.g., T helper 17 cells) and other factors. However, the DE disease pathogenesis remains unclear, thereby affecting its clinical treatment. This study aimed to explore the mechanism through which prostaglandin E2 (PGE2) affects DE inflammation by regulating Th17. The DE mouse model was established through subcutaneous injection of scopolamine hydrobromide. The tear secretion test and break-up time (BUT) method were used to detect tear secretion and tear film BUT, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the concentrations of PGE2, interleukin (IL)-17, IL-6 and tumour necrosis factor (TNF-α) in tear fluid and those of PGE2 and IL-17 in the serum. RT-qPCR and western blotting were used to test the mRNA and protein expression levels of IL-17 and retinoid-related orphan receptor-γt (RORγt). PGE2 was highly expressed in the DE mouse model. The mRNA and protein levels of IL-17 and the key Th17 transcription factor RORγt were increased in tissues of the DE mice. Moreover, PGE2 promoted tear secretion, reduced the BUT, increased the IL-17 concentration in tears and increased the Th17 cell proportion in DE, whereas the PGE2 receptor inhibitor AH6809 reversed the effects of PGE2 on tear secretion, BUT, and the Th17 cell proportion in draining lymph node (DLN) cells. Taken together, the study findings indicate that PGE2 could induce DE-related symptoms by promoting Th17 differentiation.


Assuntos
Síndromes do Olho Seco , Células Th17 , Camundongos , Animais , Células Th17/metabolismo , Dinoprostona/metabolismo , Interleucina-17 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Diferenciação Celular , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , RNA Mensageiro
9.
Front Immunol ; 15: 1277557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410517

RESUMO

Introduction: In VL, a proinflammatory phenotype is typically associated with enhanced phagocytosis and a Th1 mediated immune response resulting in infection control. In contrast, an anti-inflammatory phenotype, associated with a predominant regulatory response, typically enables intracellular multiplication of Leishmania parasites and disease progression. Methods: To investigate the impact of chemotherapy on Th2 and Th17 immune responses in patients with visceral leishmaniasis (VL), we assessed all combinations of intracellular expression of IFN-γ, IL-10, IL-4 and IL-17 in the CD4+ and CD8+ T cell populations of peripheral blood mononuclear cell (PBMC) samples from patients, after antigenic stimulation with Leishmania lysate, throughout treatment and follow-up. As increases in spleen and liver sizes and decreases in hematocrit, hemogloblin, erythrocytes, monocytes, leukocytes and platelets levels are strongly related to the disease, we studied the correlations between the frequencies of T cells producing the afore mentioned cytokines, individually and in combination, and these variables, as markers of disease or cure. Results: We found that the frequency of IFN-γ-producingCD4+ T cells increased until the end of chemotherapy with Glucantime® or AmBisome ®, while IL-10, IL-4 and IL-17-producing CD4+ T cells peaked on day 7 following the start of treatment. Although the frequency of CD4+IL-17+ cells decreased during treatment an increase was observed after clinical cure. The frequency of CD4+ T cells producing only IFN-γ or IL-17 correlated with blood monocytes levels. Frequencies of double-producers of IFN-γ and IL-10 or IL-4 correlated positively with eosinophils and platelets levels. Together, this suggest that IFN-γ drives the immune response towards Th1 at cure. In contrast, and associated with disease or Th2 response, the frequency of CD4+ IL-10+ cells correlated positively with spleen sizes and negatively with circulating monocyte levels, while the frequency of CD4+ producing both IL-4 and IL-10 correlated negatively with platelets levels. The frequency of CD8+ single-producers of IFN-γ increased from day 21 to 90 while that of single-producers of IL-10 peaked on day 7, of IL-4 on day 30 and of IL-17, on day 180. IFN-γ expression in CD8+ single- and double-producers of cytokines was indicative of an immune response associated with cure. In contrast, frequencies of CD8+ double-producers of IL-4 and IL-10, IL-4 and IL-17 and IL-10 and IL-17 and producers of three and four cytokines, were associated with disease and were low after the cure. Frequencies of CD8+ T cells producing IFN-γ alone or with IL-17 were positively correlated with platelets levels. In contrast, as markers of disease: 1) frequencies of single producers of IL-10 correlated negatively with leukocytes levels, 2) frequencies of double producers of IL-4 and IL-10 correlated negatively with platelet, leukocyte, lymphocyte and circulating monocyte levels, 3) frequencies of triple-producers of IFN-γ, IL-4 and IL-10 correlated negatively with platelet, leukocyte and neutrophil levels and 4) frequencies of producers of IFN-γ, IL-4, IL-10 and IL-17 simultaneously correlated positively with spleen size, and negatively with leukocyte and neutrophil levels. Discussion: Our results confirmed that the clinical improvement of VL patients correlates with the decrease of an IL-4 and IL-10 CD4+Th2 response, the recovery of CD4+ Th1 and Th17 responses and the frequency of CD8+ single-producers of IFN-γ and double producers of IFN-γ and IL-17.


Assuntos
Linfócitos T CD8-Positivos , Leishmaniose Visceral , Humanos , Interleucina-10 , Interleucina-17 , Leucócitos Mononucleares/metabolismo , Interleucina-4 , Interferon gama/metabolismo , Citocinas/metabolismo , Células Th17/metabolismo
10.
FASEB J ; 38(4): e23487, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345808

RESUMO

Increasing attention is being paid to the mechanistic investigation of exercise-associated chronic inflammatory disease improvement. Ulcerative colitis (UC) is one type of chronic inflammatory bowel disease with increasing incidence and prevalence worldwide. It is known that regular moderate aerobic exercise (RMAE) reduces the incidence or risk of UC, and attenuates disease progression in UC patients. However, the mechanisms of this RMAE's benefit are still under investigation. Here, we revealed that ß-hydroxybutyrate (ß-HB), a metabolite upon prolonged aerobic exercise, could contribute to RMAE preconditioning in retarding dextran sulfate sodium (DSS)-induced mouse colitis. When blocking ß-HB production, RMAE preconditioning-induced colitis amelioration was compromised, whereas supplementation of ß-HB significantly rescued impaired ß-HB production-associated defects. Meanwhile, we found that RMAE preconditioning significantly caused decreased colonic Th17/Treg ratio, which is considered to be important for colitis mitigation; and the downregulated Th17/Treg ratio was associated with ß-HB. We further demonstrated that ß-HB can directly promote the differentiation of Treg cell rather than inhibit Th17 cell generation. Furthermore, ß-HB increased forkhead box protein P3 (Foxp3) expression, the core transcriptional factor for Treg cell, by enhancing histone H3 acetylation in the promoter and conserved noncoding sequences of the Foxp3 locus. In addition, fatty acid oxidation, the key metabolic pathway required for Treg cell differentiation, was enhanced by ß-HB treatment. Lastly, administration of ß-HB without exercise significantly boosted colonic Treg cell and alleviated colitis in mice. Together, we unveiled a previously unappreciated role for exercise metabolite ß-HB in the promotion of Treg cell generation and RMAE preconditioning-associated colitis attenuation.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colo/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Th17/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
Int J Lab Hematol ; 46(3): 515-522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357712

RESUMO

BACKGROUND: Altered T-cell repertoire with an aberrant T-cell activation and imbalance of the Th17/Treg cells has been reported in acquired aplastic anemia (aAA). miRNAs are well known to orchestrate T-cell activation and differentiation, however, their role in aAA is poorly characterized. The study aimed at identifying the profile of miRNAs likely to be involved in T-cell activation and the Th17/Treg-cell imbalance in aAA, to explore newer therapeutic targets. METHODS: Five milliliters peripheral blood samples from 30 patients of aAA and 15 healthy controls were subjected to flow cytometry for evaluating Th17- and Treg-cell subsets. The differential expression of 7 selected miRNAs viz; hsa-miR-126-3p, miR-146b-5p, miR-155-5p, miR-16, miR-17, miR-326, and miR-181c was evaluated in the PB-MNCs. Expression analysis of the miRNAs was performed using qRT-PCR and fold change was calculated by 2-ΔΔCt method. The alterations in the target genes of deregulated miRNAs were assessed by qRT-PCR. The targets studied included various transcription factors, cytokines, and downstream proteins. RESULTS: The absolute CD3+ lymphocytes were significantly elevated in the PB of aAA patients when compared with healthy controls (p < 0.0035), however, the CD4:CD8 ratio was unperturbed. Th17: Treg-cell ratio was altered in aAA patients (9.1 vs. 3.7%, p value <0.05), which correlated positively with disease severity and the PNH positive aAA. Across all severities of aAA, altered expression of the 07 miRNAs was noted in comparison to controls; upregulation of miR-155 (FC-2.174, p-value-0.0001), miR-146 (FC-2.006, p-value-0.0001), and miR-17 (FC-3.1, p-value-0.0001), and downregulation of miR-126 (FC-0.329, p-value-0.0001), miR-181c (FC-0.317, p-value-0.0001), miR-16 (FC-0.348, p-value-0.0001), and miR-326 (FC-0.334, p-value-0.0001). Target study for these miRNAs revealed an increased expression of transcription factors responsible for Th1 and Th17 differentiation (T-bet, RORϒt, IL-17, IL-6, and IFN-ϒ), T-cell activation (NFκB, MYC, and PIK3R2), downregulation of FOX-P3, and other regulatory downstream molecules like SHIP-1, ETS-1, IRAK-1, TRAF-6, and PTEN. CONCLUSION: The study for the first time highlights the plausible role of different miRNAs in deregulating the Th17/Treg-cell imbalance in aAA, and comprehensively suggest the role of altered NF-kB and mTOR pathways in aAA. The axis may be actively explored for development of newer therapeutic targets in aAA.


Assuntos
Anemia Aplástica , Ativação Linfocitária , MicroRNAs , Linfócitos T Reguladores , Células Th17 , Humanos , MicroRNAs/genética , Células Th17/imunologia , Células Th17/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anemia Aplástica/imunologia , Anemia Aplástica/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Idoso , Adolescente
12.
Int Immunopharmacol ; 129: 111601, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350354

RESUMO

Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Células Th17/metabolismo , Imunoterapia/métodos , Anticorpos Monoclonais/metabolismo , Microambiente Tumoral
13.
J Immunol ; 212(6): 1029-1039, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284984

RESUMO

Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor ß control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Camundongos , Citosina , DNA/metabolismo , Células Th17/metabolismo
14.
Virus Res ; 341: 199316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215982

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is a major public health problem. After HBV infection, viral antigens shift the immune balance in favor of viral escape. Sulforaphane (SFN) is a traditional Chinese medicine.It regulates multi-biological activities, including anti-inflammation, anticancer, and antiviral. However, few studies reported that SFN can inhibit HBV infection before. METHODS: An immunocompetent HBV CBA/CaJ mouse model and a co-culture model were used to explore the effect of SFN on HBV and whether SFN altered the immune balance after HBV infection. RESULTS: We found that SFN was able to reduce HBV DNA, cccDNA, HBsAg, HBeAg, and HBcAg levels in serum and liver tissues of HBV-infected mice. In vitro and in vivo experiments showed that SFN could significantly increase the expression of Cd86 and iNOS and inhibit the expression of Arg1 on macrophages after HBV infection. After SFN administration, Th17 markers in liver tissue and serum were significantly increased. There was no significant changes in the proportion of Treg cells in peripheral blood, but a significant increase in the proportion of Th17 cells and decrease of the Treg/Th17 ratio. Using a network pharmacology approach, we predicted macrophage migration inhibitory factor (MIF) as a potential target of SFN and further validated that MIF expression was significantly increased after HBV infection and SFN significantly inhibited MIF expression both in vitro and in vivo. There was an upward trend in HBV markers (p>0.05) after MIF overexpression. Overexpression of MIF combined with the use of SFN resulted in a significant reversion in the expression of HBV markers and polarization of macrophages towards the M1 phenotype. CONCLUSION: Our results indicated that immunocompetent HBV CBA/CaJ mouse model is a good model to evaluate HBV infection. SFN could inhibit the expression of HBV markers, promote polarization of macrophages towards the M1 phenotype after HBV infection, change the proportion of Treg and Th17 cells. Our findings demonstrate that SFN inhibit HBV infection by inhibiting the expression of MIF and promoting the polarization of macrophages towards the M1 phenotype, which illustrates a promising therapeutic approach in HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Isotiocianatos , Fatores Inibidores da Migração de Macrófagos , Sulfóxidos , Animais , Camundongos , DNA Viral/metabolismo , Vírus da Hepatite B/genética , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos Endogâmicos CBA , Linfócitos T Reguladores , Células Th17/metabolismo
15.
Hum Immunol ; 85(1): 110748, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177009

RESUMO

AIM: Periampullary adenocarcinoma (PAC) is a malignant tumor originating at the ampulla of Vater, distal common bile duct, head of the pancreas, ampulla and duodenum. The levels of circulating Th17 cells and Th17-related cytokines in patients with PAC remain unreported. Therefore, the aim of this study was to determine the levels of circulating Th17 cells and Th17-related cytokines in patients with PAC. MATERIALS AND METHODS: Flow cytometry was used to measure Th17 cell proportions in PBMCs from 60 PAC patients and 30 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-17A and IL-23 levels in serum samples, while quantitative reverse transcription polymerase chain reaction (qRT-PCR) assessed IL-17A mRNA expression and Th17-related transcription factors (RORγt and STAT3) in tissue samples. RESULTS: The findings showed a substantial increase in Th17 cell percentages, elevated concentrations of IL-17A and IL-23, and higher mRNA expression levels of IL-17A, RORγt, and STAT3 in patients with PAC when compared to healthy controls (HCs). CONCLUSION: Th17 cells play an important role in the pathogenesis of PAC and may represent potential therapeutic targets.


Assuntos
Adenocarcinoma , Citocinas , Humanos , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Células Th17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Interleucina-23/metabolismo , RNA Mensageiro/genética
16.
Int Immunopharmacol ; 128: 111539, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244519

RESUMO

PURPOSE: This study aimed to explore the mechanism by which systemic lupus erythematosus (SLE) activity is promoted through Treg inhibition from the perspective of ceRNA. METHODS: qRT-PCR was used to detect the expressions of circETS1, miR-1205, and FoxP3 in clinical SLE patient samples. Overexpression of circETS1and miR-1205, along with knockdown of miR-1205 and FoxP3 were conducted in CD4+ T cells, while the proliferation of helper T cell 17 (Th17) and regulatory T cell (Treg) was detected. Arescue assay was performed to verify the molecular mechanism of circETS1/miR-1205/Foxp3 mRNA axis in regulating CD4+ T cell differentiation. In the in vivo experiment, the expression of miR-1205 in SLE mice was intervened, and renal function, inflammatory factors, and serum complement were measured. Additionally, Treg/Th17 cell ratio was detected by flow cytometry. RESULTS: In SLE patients, Treg cells were found to decrease, while Th17 cells increased. Transfection with circETS1 overexpression led to CD4+ T cells differentiating into Treg cells, causing an imbalance in the Th17/Treg ratio. Transfection of miR-1205 mimic and si-FoxP3 could reverse the effect of circETS1 overexpression. Moreover, inhibiting the expression of miR-1205 showed therapeutic effects on SLE mice. CONCLUSION: circETS1 inhibits Treg via the miR-1205/FoxP3 axis, thereby promoting SLE activity, which may become a new target for SLE treatment.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Animais , Humanos , Camundongos , Diferenciação Celular , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , RNA Circular/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Fatores de Transcrição/genética
17.
Intern Med ; 63(2): 153-158, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37197955

RESUMO

Objective T helper (Th) cells play a central role in the pathogenesis of ulcerative colitis (UC). The present study analyzed the changes in circulating T cells by administration of ustekinumab (UST), an interleukin-12/23p40 antibody. Methods CD4 T cells were isolated from peripheral blood at 0 and 8 weeks after UST treatment, and we analyzed the proportion of CD4 T cells by flow cytometry. Clinical information and laboratory data were obtained at 0, 8, and 16 weeks. Patients We evaluated 13 patients with UC who received UST for the induction of remission between July 2020 and August 2021. Results The median partial Mayo score improved from 4 (1-7) to 0 (0-6) (p<0.001) with UST. Among serological parameters, albumin concentrations, C-reactive protein concentrations, the sedimentation rate, and leucine-rich alpha 2 glycoprotein concentrations showed significant improvement with UST. A flow cytometric analysis of circulating CD4 T cells showed that the percentage of Th17 cells was significantly decreased by UST treatment in all patients (1.85% to 0.98%, p<0.0001). Th1 cells were significantly increased by UST treatment (9.52% to 10.4%, p<0.05), but Th2 and regulatory T cells were not significantly different. The high-Th17 subgroup had a significantly better partial Mayo score than the low-Th17 subgroup at 16 weeks after UST treatment (0 vs. 1, p=0.028). Conclusion Treatment with UST decreases circulating Th17 cells, suggesting that this change may be related to the anti-inflammatory effect of UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Células Th17/metabolismo , Ustekinumab/farmacologia , Ustekinumab/uso terapêutico , Linfócitos T CD4-Positivos/metabolismo , Células Th1/metabolismo
18.
Biol Trace Elem Res ; 202(2): 659-670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37249802

RESUMO

Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are chronic relapsing inflammatory gastrointestinal tract diseases of uncertain origin, which are frequently associated with zinc deficiency. Animal models have a considerable value in elucidating the process of IBD. In this study, 50 male C57BL/6 J mice were randomly assigned to five groups: control group (Con), 2,4,6-trinitrobenzenesulfonic acid (TNBS) group, and three zinc supplementation groups, namely 160 ppm group, 400 ppm group, and 1000 ppm group. The results showed that supplementation of dietary zinc with zinc oxide could effectively relieve the severity of ulcerative colitis induced by TNBS in mice. We demonstrate that the protective mechanism involves the immunomodulation of dietary zinc by increasing CD3+, CD3+CD8+, and Th2 cells, suppressing Th1 and Th17 cells, and decreasing the production of serum IL-1ß and IL-18. The dietary zinc oxide seems to be able to suppress the NF-κB/NLRP3 signaling pathway by downregulating the mRNA and protein expression of NIK, IKK, NF-κB, and NLRP3. The results suggest that dietary supplementation of zinc oxide may protect against colitis, and proper daily zinc supplementation may reduce the risk of IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Óxido de Zinco , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Th17/metabolismo , Óxido de Zinco/farmacologia , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Transdução de Sinais , Zinco/efeitos adversos , Modelos Animais de Doenças
19.
Rheumatology (Oxford) ; 63(2): 571-580, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37228024

RESUMO

OBJECTIVES: Endothelial protein C receptor (EPCR) is highly expressed in synovial tissues of patients with RA, but the function of this receptor remains unknown in RA. This study investigated the effect of EPCR on the onset and development of inflammatory arthritis and its underlying mechanisms. METHODS: CIA was induced in EPCR gene knockout (KO) and matched wild-type (WT) mice. The onset and development of arthritis was monitored clinically and histologically. T cells, dendritic cells (DCs), EPCR and cytokines from EPCR KO and WT mice, RA patients and healthy controls (HCs) were detected by flow cytometry and ELISA. RESULTS: EPCR KO mice displayed >40% lower arthritis incidence and 50% less disease severity than WT mice. EPCR KO mice also had significantly fewer Th1/Th17 cells in synovial tissues with more DCs in circulation. Lymph nodes and synovial CD4 T cells from EPCR KO mice expressed fewer chemokine receptors CXCR3, CXCR5 and CCR6 than WT mice. In vitro, EPCR KO spleen cells contained fewer Th1 and more Th2 and Th17 cells than WT and, in concordance, blocking EPCR in WT cells stimulated Th2 and Th17 cells. DCs generated from EPCR KO bone marrow were less mature and produced less MMP-9. Circulating T cells from RA patients expressed higher levels of EPCR than HC cells; blocking EPCR stimulated Th2 and Treg cells in vitro. CONCLUSION: Deficiency of EPCR ameliorates arthritis in CIA via inhibition of the activation and migration of pathogenic Th cells and DCs. Targeting EPCR may constitute a novel strategy for future RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Células Dendríticas/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Membrana Sinovial/patologia , Células Th17/metabolismo
20.
Endocrine ; 83(2): 432-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37651006

RESUMO

PURPOSE: This study aimed to explore the molecular pathogenesis of Graves' disease (GD). METHODS: The gene expression profile in CD4+ T cells from GD patients and healthy controls were analyzed through mRNA-sequencing. The expression of NR4A2 was determined by quantitative real-time PCR and western blot. The levels of Th17 and Treg were determined by flow cytometry. ELISA was employed to detect the levels of IL-10, IL-17A, IL-17F and IL-22. RESULTS: In the CD4+ T cells from GD patients, there were 128 up-regulated and 510 down-regulated genes. Subsequently, we focused on the role of nuclear receptor 4 group A member 2 (NR4A2) in GD. NR4A2 was lowly expressed in the CD4+ T cells from GD patients. Its expression was negatively correlated with free triiodothyronine and tetraiodothyronine, but positively correlated with thyroid stimulating hormone. NR4A2 knockdown decreased the percentage of Treg cells, with a decreased IL-10 level. While its over-expression augmented the Treg differentiation, with an elevated IL-10 level. In addition, knockdown or over-expression of NR4A2 showed no significant influence on Th17 differentiation. CONCLUSION: These results indicate that the low level of NR4A2 in GD patients may suppress Treg differentiation, but have no influence on Th17 differentiation, leading to the imbalance of Th17/Treg and contributing to the development of GD. Revealing the role of NR4A2 in GD provides a novel insight for the treatment of GD.


Assuntos
Doença de Graves , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Interleucina-10 , Doença de Graves/patologia , Diferenciação Celular , Células Th17/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...